

#### ENGINEERING



### **GEOTECHNICAL INVESTIGATION**



### PROPOSED 2-STOREY RESTAURANT, 1144 HUGEL AVENUE, MIDLAND, ONTARIO

Prepared for: United Hotels Inc.

Project No. FG 23-12807 April 20, 2023

400 Esna Park Drive, Unit 15 Markham, ON L3R 3K2

Tel: (905) 475-7755 Fax: (905) 475-7718 www.fishereng.com



Issued to:

Contact:

Project Name:

**Project Address:** 

**Project Number:** 

Issued on:

Report Prepared by: (Primary Contact)

**Project Manager:** 

**Reviewed By:** 

United Hotel Inc.

S.P. Dhillon dhillon7865@yahoo.ca

Proposed 2-Storey Restaurant

1144 Hugel Avenue, Midland, Ontario

FG 23-12807

April 20, 2023

R.S. CHAHAL E OF C

Rajinder Chahal, P. Eng., Senior Project Engineer 647.227.8473 rajinder@fishereng.com

P

Clive Wiggan, PhD., PMP., Project Manager <u>clive@fishereng.com</u>

A. FISHER

Dave Fisher, C. Chem., P. Eng., President <u>dave@fishereng.com</u>



Fisher Engineering Limited

## TABLE OF CONTENTS

| 1.  | INT  | RODUCTION 1                                |    |
|-----|------|--------------------------------------------|----|
| 2.  | SIT  | E AND PROJECT DESCRIPTION 1                |    |
| 3.  | SCO  | OPE OF GEOTECHNICAL WORK 1                 | I  |
| 4.  | ME   | THOD OF INVESTIGATION                      | 2  |
| 5.  | SUE  | BSOIL CONDITIONS                           | \$ |
| 6.  | GR   | OUNDWATER CONDITIONS 4                     | ŀ  |
| 7.  | GE   | OTECHNICAL DISCUSSIONS AND RECOMMENDATIONS | ;  |
| 7   | .1   | GENERAL DISCUSSION                         | 5  |
| 7   | .2   | FOUNDATION CONSIDERATIONS                  | 5  |
| 7   | .3   | EARTHQUAKE CONSIDERATIONS                  | 5  |
| 7   | .4   | SLAB-ON-GRADE CONSTRUCTION                 | ;  |
| 7   | .5   | PAVEMENT DESIGN                            | ,  |
| 7   | .6   | EXCAVATION                                 | ;  |
| 8.  | SUL  | LPHATE ATTACK                              | ;  |
| 9.  | GEI  | NERAL CONSIDERATIONS 9                     | )  |
| 10. | С    | LOSING                                     | )  |
| API | PENI | DIX A – SITE & LOCATION PLANSA             | ١  |
| API | PENI | DIX B – LOGS OF BOREHOLESB                 | •  |
| API | PENI | DIX C – LABORATORY TEST RESULTSC           | •  |

### 1. INTRODUCTION

Fisher Engineering Limited was retained by United Hotels Inc to carry out a geotechnical subsurface investigation for the proposed 2-storey restaurant at 1144 Hugel Avenue, Midland, Ontario.

The purpose of the geotechnical investigation was to determine general subsurface conditions in the are of the proposed two storey restaurant at the site and provide geotechnical comments/recommendations for the design of the proposed restaurant building by means of seven (7) boreholes.

This report presents results of tests performed in accordance with the general terms of reference outlined in the scope of work.

The report has been prepared specifically and solely regarding geotechnical aspects of design and construction for the proposed restaurant building as shown in the site plan provided.

### 2. SITE AND PROJECT DESCRIPTION

The subject Super 8 by Wyndham property is located on the north side of Hugel Avenue, east of County Road 93 in a predominantly commercial area in the west portion of Midland.

The property is occupied by a three-storey vinyl side building located on the southeast potion. Asphalt paved driveways were observed around the building along with parking areas on the north and west sides.

The site is bounded by a two-storey Huronia Medical Centre building to the east, Hugel Avenue to the south, A & W Canada burger shop towards the west, followed by County Road 93, and a Canadian Tire property to the north.

We understand that a two-storey restaurant building is proposed on the north side of the existing hotel building.

### 3. SCOPE OF GEOTECHNICAL WORK

The geotechnical scope of work includes the following:

Investigation of subsurface conditions in the area of the proposed restaurant building by advancing boreholes, soil sampling and visual evaluation/classification of the soil samples.



- > Preparation of a geotechnical report with comments and recommendations regarding:
  - Appropriate foundation depths, type and soil bearing pressures (SLS & ULS).
  - Seismic Site Classification.
  - Slab-on-grade construction.
  - Pavement construction and
  - Excavation etc.

#### 4. METHOD OF INVESTIGATION

Subsurface exploration/drilling of boreholes was carried on March 21, 2023, during which seven (7) boreholes (BH1 – BH7), were advanced to approximate depths of 3.51m and 6.55m below prevailing grades. The approximate location of the boreholes and elevations are shown on the Borehole Location Plan in Appendix A.

Elevations at borehole locations were established by interpolation from a topographic survey/plan dated April 14, 2022, prepared by F.S. Surveying Inc.

All boreholes were advanced using a truck mounted drill rig equipped with solid stem augurs. Subsurface strata were sampled at regular intervals of depth using a split-spoon sampler following the procedure as detailed in ASTM Standard specification D1586 for Standard Penetration Tests. Field tests to determine engineering parameters of the soil were carried out during drilling, which included Standard Penetration Tests (SPT).

All soil samples were taken to our accredited laboratory for final visual assessment, classification and selected moisture content testing and grain size analyses. The samples were tested and classified in general accordance with the Unified Soil Classification System, ASTM D 2487, and Standard Practice for Classification of Soils for Engineering Purposes.

Soil description and test results are presented in the borehole records and in Appendix C.

The soil samples recovered during the investigation will be stored in our laboratory for a period of 30 days after which they will be discarded unless further instructions are received.



### 5. SUBSOIL CONDITIONS

Subsurface conditions encountered at borehole locations are shown on the Log Sheets in Appendix B. The logs include stratification at borehole locations along with detailed soil descriptions. Variations in soil stratification may occur and should be expected between borehole locations and elsewhere on the site.

#### Asphalt/Granular Material/Topsoil/Fill

Asphalt underlain by granular material was found at the surface of BH1 & BH4. Topsoil was found at the surface of BHs 2, 3, 6 & 7. Fill soils were encountered at the surface of BH5 and below the granular/topsoil of BHs 1 to 4, 6 & 7.

The fill extended to approximate depths below prevailing grades/elevations as shown in Table 1.

| Borehole No. | Surface<br>Elevation (m asl) | Depth of Borehole<br>(m bgs) | Elevation at Bottom<br>of Borehole (m asl) | Depth of Fill<br>(m bgs) | Elevation at Bottom of<br>Fill (m asl) |  |
|--------------|------------------------------|------------------------------|--------------------------------------------|--------------------------|----------------------------------------|--|
| BH1(MW)      | 245.67                       | 5.03                         | 240.64                                     | 0.61                     | 245.06                                 |  |
| BH2(MW)      | 246.01                       | 5.03                         | 240.98                                     | 0.61                     | 245.40                                 |  |
| BH3(MW)      | 245.96                       | 6.55                         | 239.41                                     | 0.38                     | 245.58                                 |  |
| BH4(MW)      | 245.76                       | 5.03                         | 240.73                                     | 0.61                     | 245.15                                 |  |
| BH5(MW)      | 245.88                       | 5.03                         | 240.85                                     | 0.38                     | 245.50                                 |  |
| BH6          | 245.96                       | 3.51                         | 242.45                                     | 0.38                     | 245.58                                 |  |
| BH7          | 245.98                       | 3.51                         | 242.47                                     | 0.38                     | 245.60                                 |  |

#### Table 1: Approximate Fill Depths/Elevations

The fill composition varied from dark brown to brown sand with trace of roots/topsoil and trace to some gravel.

#### **BROWN SAND**

Native soils of brown sand with trace of silt were encountered below the fill soils. Relative density of the sandy deposit varied from loose to compact and it extended to depth of 4.57m in BH5.

Boreholes 1 to 4, 6 and 7 were terminated in the brown sand between depths of 3.51m and 5.03m. We consider the low 'N'-value of 6 in SS3 of borehole 3 may be due to localised/disturbed soils.



#### **BROWN SILTY SAND**

Loose greyish brown silty sand was encountered towards the bottom of BH5.

#### 6. GROUNDWATER CONDITIONS

The boreholes were advanced using dry solid stem auguring. All boreholes were found to be dry on completion of the respective soil boring operations.

Monitoring wells were installed in BH1 to BH5 for groundwater observations / sampling and testing.

Groundwater levels/elevations as measured on completion of soil boring operations and from the monitoring wells are presented in Table 2.

| Monitoring | Surface<br>Elevation | Depth of    | Elevation at well base, m | In open bo<br>Comp               |         | 23-Apr-23          |                  |  |
|------------|----------------------|-------------|---------------------------|----------------------------------|---------|--------------------|------------------|--|
| Well No.   | (m, asl)             | Well, m bgs | asl                       | GW level, GW Ele,<br>m bgs m asl |         | GW level,<br>m bgs | GW Ele,<br>m asl |  |
| BH1(MW)    | 245.67               | 4.57        | 241.10                    | dı                               | dry dry |                    | Ŷ                |  |
| BH2(MW)    | 246.01               | 4.57        | 241.44                    | di                               | γ       | dry                |                  |  |
| BH3(MW)    | 245.96               | 6.10        | 239.86                    | dry                              |         | dry                |                  |  |
| BH4(MW)    | 245.76               | 4.57        | 241.19                    | di                               | Ŷ       | di                 | Ŷ                |  |
| BH5(MW)    | 245.88               | 4.57        | 241.31                    | di                               | γ       | dry                |                  |  |
| BH6        | 245.96               | -           | -                         | dry                              |         | dry                |                  |  |
| BH7        | 245.98               | -           | -                         | dry                              |         | dry                |                  |  |

#### **Table 2: Groundwater Depths and Elevations**

Based on the preceding information and visual examination of the soil samples, we consider that water bearing aquifer was not encountered within the depths penetrated by the boreholes. However, groundwater may be encountered from the wet seams/pockets/layers trapped inside the fill or embedded in native soils.

It should be noted that Fisher also carried out a hydrogeological investigation in conjunction with this geotechnical investigation. Issues pertaining to the groundwater, such as requirements for temporary dewatering, permanent drainage, amount/quality of water for discharge etc., have been



discussed/addressed separately in the hydrogeological investigation report. These reports should be read in conjunction in finalizing the subsurface structure design process.

#### 7. GEOTECHNICAL DISCUSSIONS AND RECOMMENDATIONS

#### 7.1 General Discussion

We understand that a 2-Storey restaurant building with slab-on-grade construction is proposed in the area covered by boreholes 2, 3 & 5.

The following sections provide general geotechnical recommendations for design and construction.

#### 7.2 Foundation Considerations

Boreholes indicate that natural soils can be used for foundation support using conventional strip and/or spread footing foundations.

For footings placed over undisturbed natural soils at approximate depth of 0.9m (nos. 2 & 5) and 1.9m (no. 3) below existing grades, soil bearing pressures of 120kPa (SLS) and 180kPa (ULS) can be used for foundation design purposes.

For footings founded at different levels in the vicinity of each other or located adjacent to excavated and backfilled areas, such as sewer trenches/existing footing/other excavations etc., the slope of the imaginary line joining the bottom of two footings, or the bottom of footing and excavation should not be steeper than 1.5H:1V. Footings beside existing footings should be placed/founded at the existing footing founding levels. For stepped footings the horizontal distance between two risers should not be less than 600mm and the vertical distance between two horizontal portions should be limited to 400mm.

Subsoil conditions at footing founding levels should be inspected by soils engineer from our office, prior to pouring concrete, to ensure that the design soil bearing pressures are being attained.

Footings subject to seasonal winter weather, such as exterior wall and column footings, should be founded at least 1.4m below adjacent finished grades to prevent any damage due to frost penetration.

During cold/freezing weather conditions founding soils should be adequately protected to prevent any damage due to frost penetration.



#### 7.3 Earthquake Considerations

The 2012 OBC Subsection 4.1.8 stipulates that a building should be designed to meet the requirements of the Earthquake Load and Effects. Site Classification for Seismic Site Response (Table 4.1.8.4.A) is determined from the average Standard Penetration Resistance ( $N_{60}$ ) and/or the undrained shear strength (Su) of the soils within the upper 30m.

Based on the results of standard penetration tests i.e., "N" values from the current geotechnical investigation of limited depths, site designation for seismic analysis applicable for the proposed building is expected to be **"Class E"**. However, we are of the opinion that Site Class "D" will be available. Shear wave velocity measurements should be carried out if so desired.

Seismic parameters and analysis requirements are detailed in Subsection 4.1.8 of the 2012 OBC.

#### 7.4 Slab-on-Grade Construction

From boreholes the existing fill soils generally appear to be free of highly compressible organic/topsoil mixed soils or other deleterious materials. Based on SPT 'N' values, fill in the proposed building area generally appears to be reasonably compacted.

The existing fill should be further evaluated from footing/service trenches at the time of construction. All loose and unsuitable fill, such as organic/topsoil mixed soils etc., should be removed from the areas to be slabbed.

Exposed subgrade should be proof rolled in the presence of our soils personnel to detect any compressible, spongy, or unstable areas. If any isolated pockets of such materials are detected, they should be sub-excavated to competent subsoils and backfilled with approved inorganic materials compacted to at least 95% of their Standard Proctor Maximum Dry Density (S.P.M.D.D.) in thin layers.

Any new fill should consist of approved compactable inorganic soils, placed in thin layers (not exceeding 300mm), and each layer should be compacted to at least 98% of its S.P.M.D.D. under dry and frost-free conditions.

For normal light duty slab-on-grade construction, a minimum 150mm thick bedding layer consisting of granular 'A' or 20mm crusher run material should be specified under the slab-on-grade to serve as a moisture barrier. The bedding layer should be compacted to a minimum of 98% of its S.P.M.D.D.



#### 7.5 Pavement Design

The functional life of a pavement depends directly on the soil subgrade conditions and load carrying capacity of the pavement structure. Minimum flexible pavement structure thicknesses are recommended in Table 3. The pavement structure should also meet the minimum municipal design requirements, if any, for the proposed development.

Pavement thicknesses in Table 3 are applicable for dry and stable subgrade conditions during summer season construction only. If construction is to be carried out during winter/wet weather conditions and for unstable subgrade conditions, the thicknesses of granular materials may have to be increased.

|                                                     | COMPACTED THICKNESSES |                                   |  |  |  |  |
|-----------------------------------------------------|-----------------------|-----------------------------------|--|--|--|--|
| PAVEMENT LAYER                                      | LIGHT DUTY<br>PARKING | DRIVEWAYS &<br>HEAVY DUTY PARKING |  |  |  |  |
| Asphalt top course, HL-3                            | 40mm                  | 40mm                              |  |  |  |  |
| Asphalt base course, HL-8                           | 40mm                  | 60mm                              |  |  |  |  |
| Granular 'A' or 20mm crusher run limestone base     | 150mm                 | 150mm                             |  |  |  |  |
| Granular 'B' or 50mm crusher run limestone sub-base | 150mm                 | 300mm                             |  |  |  |  |

#### **Table 3: Minimum Flexible Pavement Structure Thicknesses**

The granular base materials should conform to O.P.S.S. Form 1010 specifications and be compacted to at least 98% of their SPMDD's. Similarly, asphaltic concretes should meet O.P.S.S. Form 1150 requirements for specified grades and be compacted to at least 97% of their Marshall Densities.

Subgrade may be prepared as described in Subsection 7.4.

All loose/compressible organic fill should be removed from the subgrade areas to be paved. Upper 1m of fill subgrade must be compacted to at least 98%SPMDD.

Water should not be allowed to accumulate at the edges of pavement and regular monitoring/maintenance should be carried out as required.



#### 7.6 Excavation

The proposed excavations may extend to depth of 1.4m or more. In accordance with the Ontario Occupational Health and Safety Act, all excavation deeper than 1.2m should be properly supported or sloped back to a safe angle.

Moist fill and native sandy soils are Type 3 Soils. Dry sand will crumble to its estimated angle of internal friction of 32 degrees.

The presence of wet seam/layers/pockets may require flattening of the side slopes.

Soil parameters in Table 4 can be used in the evaluation of lateral earth pressures.

#### Table 4: Soil parameters

|         | Unit                 | Coefficient of Earth Pressure |      |      |  |  |
|---------|----------------------|-------------------------------|------|------|--|--|
| SUBSOIL | Weight, γ<br>(kN/m³) | Ka                            | Kp   | Ko   |  |  |
| Fill    | 18                   | 0.40                          | 2.50 | 0.45 |  |  |
| Sand    | 20                   | 0.33                          | 3.00 | 0.40 |  |  |

No significant groundwater issues are anticipated. Small amounts of seepage water, if any can be handled using conventional sump pumping method.

The excavation sides should be protected to prevent erosion from surface water or water bearing wet pockets/layers.

#### 8. SULPHATE ATTACK

Four soil samples from boreholes BH1 and BH3 between depths of 0.76m and 1.98m were submitted to Fisher Environmental laboratories for chemical analyses related to potential sulphate attack on buried concrete. Test results are presented in Appendix C.

Sulphate concentration in the soil samples tested are 3mg/kg, <1mg/kg, 7mg/kg & <1mg/kg or 0.0003%, <0.0001%, 0.0007 & <0.0001% respectively.

According to CSA-A23. 1-09 Table 3, the above results indicate negligible degree of exposure to sulphate attack (much less than 0.10 to 0.20% for S-3 class exposure).

pH values varied from 7.30 to 7.72 which are within the acceptable range of 5 - 11 for soils.



Chloride content was found to be less than 18µg/g.

#### 9. GENERAL CONSIDERATIONS

This report is preliminary in nature and limited in scope to those items specifically referenced in the text. No other testing and design calculations have been performed except as specifically reported.

The discussions and recommendations presented in this report are intended for the sole guidance of the client named and design consultants. It should not be relied upon for any other purposes.

The information on which these recommendations are based is subject to confirmation by engineering personnel at the time of construction.

The fact that localized variations in subsurface conditions may be present between and beyond the boreholes/depths investigated and that those conditions may be significantly different from the general description provided for design purposes should be understood.

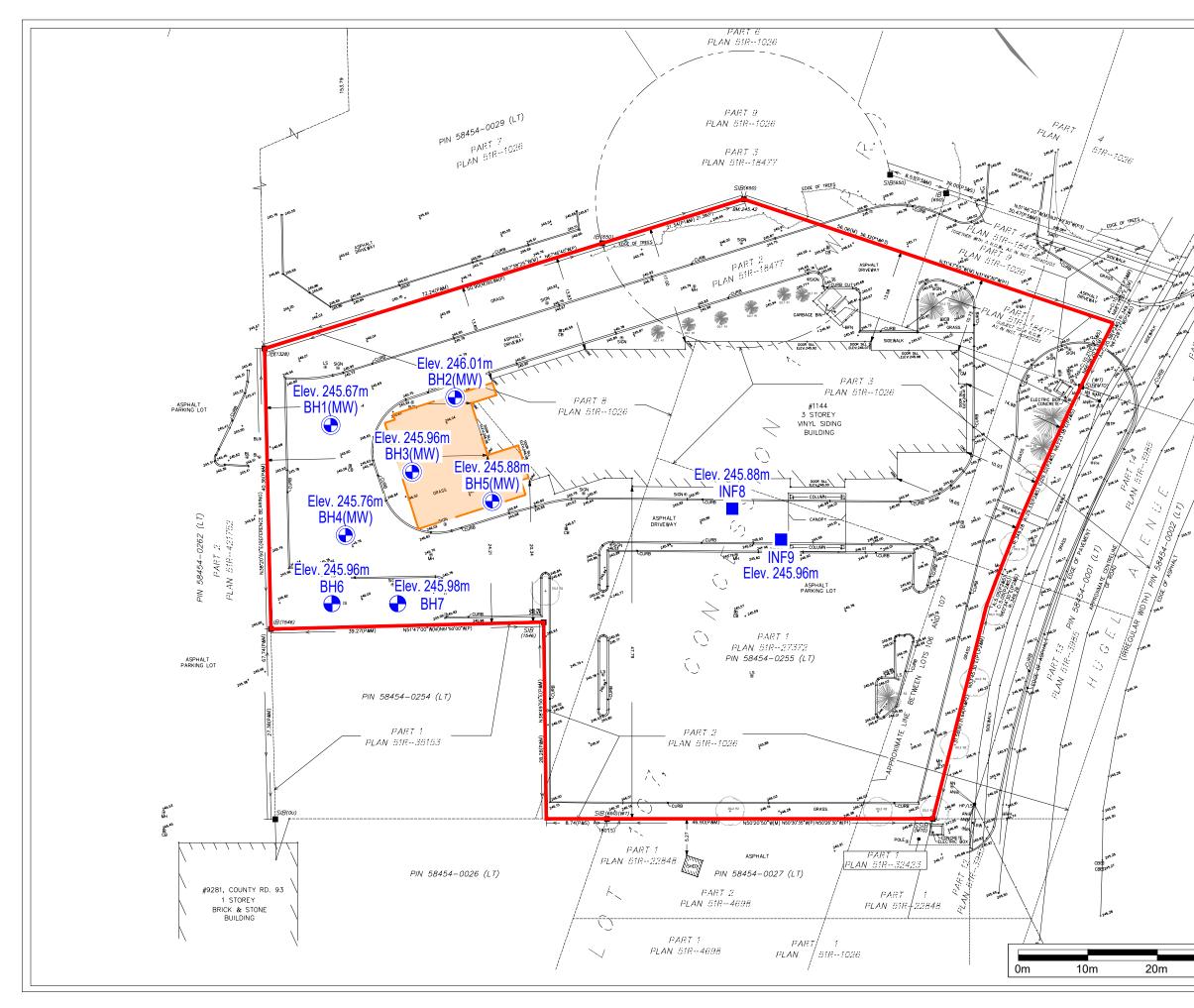
Contractors bidding on or undertaking the work should decide on their own investigations, as well as their own interpretations of the factual borehole results. This concern specifically applies to the classification of subsurface soils and potential disposal/reuse of these soils on/off site. Contractors must draw their own conclusions as to how the near surface and subsurface conditions may affect them.

It is recommended that Fisher be contacted to aid in the interpretation of the borehole records by anyone undertaking work on/or below the ground surface at this site prior to this work being carried out.

The client expressly agrees that Fisher's employees and principals shall have no personal liability to the client in respect of a claim, whether in contract, tort and/or any other cause of action in law. Accordingly, the client expressly agrees that they will bring no proceedings and take no action in any court of law against any of Fisher's employees or principals in their personal capacity.

#### 10.CLOSING


We trust that the foregoing information is sufficient for your present needs and will be pleased to review the contents of this report in greater detail should you so require. Should you require our services further in this regard, please do not hesitate to contact our office.




#### **APPENDIX A – SITE & LOCATION PLANS**



Project No. FG 23-12807 April 20, 2023





| and from the same                                                       | A00 Esna Park Dr., #15<br>Markham, Ontario<br>L3R 3K2       Tel: 905 475-7755<br>Fax: 905 475-7718         NORTH       Image: Constant State Sta |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and<br>And<br>And<br>And<br>And<br>And<br>And<br>And<br>And<br>And<br>A | LEGEND<br>SITE BOUNDARY<br>PROPOSED BUILDING FOOTPRINT<br>BOREHOLE WITH MONITORING WELL<br>LOCATION<br>BOREHOLE LOCATION<br>TEST HOLE LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                         | PROJECT NAME AND ADDRESS<br>GEOTECHNICAL &<br>HYDROGEOLOGICAL<br>INVESTIGATIONS<br>1144 Hugel Ave,<br>Midland, ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                         | FIGURE A2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                         | SITE PLAN WITH BOREHOLES /<br>MONITORING WELL LOCATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                         | PROJECT NO.         SHEET NO.           FE-P 23-12806/12807         SHEET NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         | DATE 5 April 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30m 40m                                                                 | SCALE<br>AS SHOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### **APPENDIX B – LOGS OF BOREHOLES**



Project No. FG 23-12807 April 20, 2023

| -C FISHE                                                                             | R LC              | )G OF  | BO       | RE                                    | EHOLE NO. <u>BH1(MW)</u> SHEET. <u>1 of 1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|--------------------------------------------------------------------------------------|-------------------|--------|----------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                      |                   |        |          | FE                                    | FE-P# 23-12806/12807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| PROJECT NAME: GEOTECHNICAL<br>INVESTIGATIONS                                         | & HYDROC          | EOLOGI |          | LOCATION: 1144 Hugel Ave, Midland, ON |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| DRILLING METHOD: CME-55, Soli                                                        | d Stem            |        | [        | DRILLING DATE: 21 March, 2023         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| SOIL PROFILE                                                                         |                   | SAI    | MPLES    |                                       | PENETRATION TESTING (SPT) ▲ VAPOUR READING (ppm) □<br>20 40 60 80 20 40 60 80 PIEZOMETER OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| DESCRIPTION                                                                          | STRATA PLOT<br>(m | TH [Y] | Type NO. | "N" VALUE                             | 20         40         60         80         20         40         60         80         PIEZOMETER OR           SHEAR STRENGTH (Kpa)         ▲         MOISTURE CONTENT (%)         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ● |  |  |  |
| 0 0 0 ~2.5" ASPHALT<br>~4" GRANULAR MATERIAL<br>FILL: Brown gravelly sand, with crus | 245.<br>hed 0.61  |        | SS-1 3   | 38                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 2 rock, moist<br>SAND:<br>4 Brown, moist, loose to compact to                        |                   | 06     | SS-2 1   | 10                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 62 Slightly moist @ 1.52m                                                            |                   |        | SS-3     | 7                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                      |                   |        | SS-4     | 11                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                      |                   |        | SS-5 1   | 13                                    | Silica Silica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 14 —                                                                                 |                   |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 165 End of borehole at 5.03m                                                         | 5.03<br>240.      | /      | SS-6     | 9                                     | ▲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                      |                   |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                      |                   |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                      |                   |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                      |                   |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                      |                   |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                      |                   |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 32 — 10<br>34 — 1                                                                    |                   |        |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Groundwater Depth (m): or                                                            | completion        | : Dry  |          |                                       | DRAWN: D.C. LOGGED: R.R. CHECKED: C.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |

|                             | <b>FISHER</b>                                                                                                                  | LO                                   | G OF           | BO               | REHOLE                    | NO. <u>BH2(MW)</u> SHEET                | <u>    1   of  1                          </u> |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|------------------|---------------------------|-----------------------------------------|------------------------------------------------|--|
|                             | ENGINEERING                                                                                                                    |                                      |                |                  | FE-P# 23-12806/12807      |                                         |                                                |  |
| PROJECT                     | NAME: GEOTECHNICAL & H<br>INVESTIGATIONS                                                                                       | YDROGE                               | OLOGI          | LOCATION: 1144 H | Hugel Ave, Midland, ON    | 1                                       |                                                |  |
|                             | METHOD: CME-55, Solid St                                                                                                       | em                                   | DRILLING DATE: | 21 March, 2023   |                           |                                         |                                                |  |
|                             | SOIL PROFILE                                                                                                                   | 01                                   | SAN            | MPLES            | PENETRATION TESTING (SPT) | ▲ VAPOUR READING (ppm) □<br>20 40 60 80 | PIEZOMETER OR                                  |  |
| (feet)<br>DEPTH<br>(meters) | DESCRIPTION                                                                                                                    | LOTA ELEV.<br>DEPTH<br>(m)<br>246.01 | LAB ID         | Type NO.         |                           |                                         | WELL CONSTRUCTION                              |  |
| 0 0<br><br>2                | 5" TOPSOIL: Organic material, roots,<br>clay, silt & sand, moist<br>FILL: Dark brown sand, trace clay, silt &<br>gravel, moist | ×××                                  |                | SS-1 1-          |                           |                                         | k PVC                                          |  |
|                             | SAND:<br>Brown, moist, compact to loose to<br>compact                                                                          |                                      |                | SS-2 1           |                           |                                         | Bentonite Pellets                              |  |
|                             |                                                                                                                                |                                      |                | SS-3 1           |                           |                                         | Bento                                          |  |
|                             |                                                                                                                                |                                      |                | SS-4 9           |                           |                                         |                                                |  |
| 10 - 3                      |                                                                                                                                |                                      |                | SS-5 1           |                           |                                         | Slotted Pipe                                   |  |
|                             |                                                                                                                                |                                      |                |                  |                           |                                         | 2" 2" 5                                        |  |
|                             |                                                                                                                                |                                      |                |                  |                           |                                         |                                                |  |
|                             | End of borehole at 5.03m                                                                                                       | 5.03 /<br>240.98                     |                | SS-6 1           |                           |                                         | 4.57m bgs                                      |  |
|                             |                                                                                                                                |                                      |                |                  |                           |                                         |                                                |  |
|                             |                                                                                                                                |                                      |                |                  |                           |                                         |                                                |  |
| 22                          |                                                                                                                                |                                      |                |                  |                           |                                         |                                                |  |
|                             |                                                                                                                                |                                      |                |                  |                           |                                         |                                                |  |
| 26 — <b>8</b>               |                                                                                                                                |                                      |                |                  |                           |                                         |                                                |  |
| 28 — — 9                    |                                                                                                                                |                                      |                |                  |                           |                                         |                                                |  |
|                             |                                                                                                                                |                                      |                |                  |                           |                                         |                                                |  |
| 32 <u>10</u>                |                                                                                                                                |                                      |                |                  |                           |                                         |                                                |  |
|                             |                                                                                                                                |                                      |                |                  |                           |                                         |                                                |  |
|                             | Groundwater Depth (m): on cor                                                                                                  | npletion:                            | Dry            |                  | DRAWN: D.C.               | LOGGED: R.R.                            | CHECKED: C.W.                                  |  |

|                              | <b>FISHER</b>                                                                                                      | LOC              | G OF   | В(                                    | DR                   | REHOLE NO. BH3(MW) SHEET. 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------|--------|---------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                              | ENGINEERING                                                                                                        | PR               | OJECT  | : F                                   | FE-P# 23-12806/12807 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| PROJECT                      | NAME: GEOTECHNICAL & H                                                                                             | YDROGE           | ologic | LOCATION: 1144 Hugel Ave, Midland, ON |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| DRILLING                     | METHOD: CME-55, Solid St                                                                                           | em               |        | DRILLING DATE: 21 March, 2023         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                              | SOIL PROFILE                                                                                                       |                  | SAM    | PLES                                  |                      | PENETRATION TESTING (SPT) VAPOUR READING (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| (feet)<br>DEPTH<br>(meters)  | DESCRIPTION                                                                                                        | STRATA PLOT      | LAB ID | Type NO.                              | "N" VALUE            | 20     40     60     80     20     40     60     80     PIEZOMETER OR       SHEAR STRENGTH (Kpa) ♣     MOISTURE CONTENT (%) ●     MOISTURE CONTENT (%) ●     MOISTURE CONTENT (%) ●     MOISTURE CONTENT (%) ●                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 0 0<br>                      | 5" TOPSOIL: Organic material, roots,<br>clay, silt & sand, moist<br>FILL: Brown sand, trace gravel, moist          | 245.96           |        | SS-1                                  | 6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                              | SAND:<br>Brown, moist, loose to compact<br>Trace gravel between 0.38m & 1.52m<br>Trace roots between 0.76m & 1.52m |                  |        | SS-2                                  | 11                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                              |                                                                                                                    |                  |        | SS-3                                  | 6                    | Image: Second state sta |  |  |
|                              |                                                                                                                    |                  |        | SS-4                                  | 11                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 10 - 3                       |                                                                                                                    |                  |        | SS-5                                  | 13                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                              |                                                                                                                    |                  |        |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                              |                                                                                                                    |                  |        | SS-6                                  | 47                   | Slotted Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                              |                                                                                                                    |                  |        |                                       | 13                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 18 —<br>6                    |                                                                                                                    |                  |        |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                              | End of borehole at 6.55m                                                                                           | 6.55 /<br>239.41 |        | SS-7                                  | 24                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                              |                                                                                                                    |                  |        |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 26 <u>-</u> 8                |                                                                                                                    |                  |        |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                              |                                                                                                                    |                  |        |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 30                           |                                                                                                                    |                  |        |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 32 <u>10</u><br>34 <u>10</u> |                                                                                                                    |                  |        |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                              |                                                                                                                    |                  |        |                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                              | Groundwater Depth (m): on cor                                                                                      | npletion: I      | Dry    |                                       |                      | DRAWN: D.C. LOGGED: R.R. CHECKED: C.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

|                             | <b>FISHER</b>                                                                                    |                   | _0(                        | G OF           | В              | OR        | EHOLE                                                         | NO. <u>BH4(MW)</u> SHEET.                              | 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------|-------------------|----------------------------|----------------|----------------|-----------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             | ENGINEERING                                                                                      |                   | PF                         | ROJECT         | NO             | .: F      | -E-P# 23-12806/12807                                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| PROJECT                     | GEOTECHNICAL & H                                                                                 | YDR               |                            |                |                |           | lugel Ave, Midland, ON                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| DRILLING                    | METHOD: CME-55, Solid St                                                                         | em                |                            | DRILLING DATE: | 21 March, 2023 |           |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                             | SOIL PROFILE                                                                                     |                   |                            | SAM            | IPLES          |           | PENETRATION TESTING (SPT)                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| (feet)<br>DEPTH<br>(meters) | DESCRIPTION                                                                                      | STRAT             | ELEV.<br>DEPTH<br>(m)      | LAB ID         | Type NO.       | "N" VALUE | 20 40 60 80<br>SHEAR STRENGTH (Kpa) <b>▲</b><br>40 80 120 160 | 20 40 60 80     MOISTURE CONTENT (%) ●     10 20 30 40 | – PIEZOMETER OR<br>WELL CONSTRUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 00<br>2                     | ~2.5" ASPHALT<br>~4" GRANULAR MATERIAL<br>FILL: Brown gravelly sand, with crushed<br>rock, moist |                   | 245.76<br>0.61 /<br>245.15 |                | SS-1           | 34        |                                                               |                                                        | <pre>     PVC     Pvc</pre> |  |  |
|                             | SAND:<br>Brown, slightly moist, loose to compact                                                 |                   |                            |                | SS-2           | 10        |                                                               |                                                        | 2" blank PVC -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 6 <u>-</u> 2                |                                                                                                  |                   |                            |                | SS-3           | 9         |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 8                           |                                                                                                  |                   |                            |                | SS-4           | 11        |                                                               |                                                        | Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                             |                                                                                                  |                   |                            |                | SS-5           | 12        |                                                               |                                                        | 2" Slotted Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 12 — <b>4</b>               |                                                                                                  |                   |                            |                |                |           |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                             | 5 1 (1) 1 1 5 07                                                                                 |                   | 5.03 /<br>240.73           |                | SS-6           | 12        |                                                               |                                                        | 4.57m bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                             | End of borehole at 5.03m                                                                         |                   | 240.73                     |                |                |           |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 20 - 6                      |                                                                                                  |                   |                            |                |                |           |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 22 – <b>7</b>               |                                                                                                  |                   |                            |                |                |           |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                             |                                                                                                  |                   |                            |                |                |           |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 26 - 8                      |                                                                                                  |                   |                            |                |                |           |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                             |                                                                                                  |                   |                            |                |                |           |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 30 - 9                      |                                                                                                  |                   |                            |                |                |           |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                             |                                                                                                  |                   |                            |                |                |           |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 10                          |                                                                                                  |                   |                            |                |                |           |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                             |                                                                                                  |                   |                            |                |                |           |                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                             | Groundwater Depth (m): on cor                                                                    | nple <sup>.</sup> | tion:                      | Dry            | <u> </u>       | 1         | DRAWN: D.C.                                                   | LOGGED: R.R.                                           | CHECKED: C.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |

|                                         | <b>FISHER</b>                                                                             | LOG                                    | OF B                          | OR        | REHOLE NO. BH5(MW) SHEET. 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                         | ENGINEERING                                                                               | PROJ                                   | ECT NC                        | ).: F     | FE-P# 23-12806/12807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| PROJECT                                 | GEOTECHNICAL & H                                                                          | YDROGEOL                               | OGICAL                        |           | LOCATION: 1144 Hugel Ave, Midland, ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                         | METHOD: CME-55, Solid St                                                                  | em                                     | DRILLING DATE: 21 March, 2023 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                         | SOIL PROFILE                                                                              |                                        | SAMPLES                       |           | PENETRATION TESTING (SPT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| (feet)<br>DEPTH<br>(meters)             | DESCRIPTION                                                                               | STRATA PLOT<br>DEDLH<br>(w)            | LAB ID<br>Type NO.            | "N" VALUE | 20         40         60         80         20         40         60         80         PIEZOMETER OR           SHEAR STRENGTH (Kpa) ♣         MOISTURE CONTENT (%) ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ● </td |  |  |  |  |
| 0 0                                     | 5" TOPSOIL: Organic material, roots,<br>clay, silt & sand, moist<br>FILL (POSSIBLE FILL): | 245.88                                 | SS-1                          | 9         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                         | Brown sand, moist<br>SAND:<br>Brown, moist, loose to compact                              |                                        | SS-2                          | 10        | Bentonite Pellets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                         |                                                                                           |                                        | SS-3                          | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 8                                       |                                                                                           |                                        | SS-4                          | 11        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                         |                                                                                           |                                        | SS-5                          | 15        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 12 — 4<br>14 — 4                        |                                                                                           |                                        |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                         | SILTY FINE SAND:<br>Greyish brown, moist, loose<br>End of borehole at 5.03m               | 4.57 /<br>241.31<br>1.5.03 /<br>240.85 | SS-6                          | 9         | 4.57m bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                         |                                                                                           |                                        |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 20 - 6                                  |                                                                                           |                                        |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 22 <u></u><br><u></u> 7<br>24 <u></u> 7 |                                                                                           |                                        |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                         |                                                                                           |                                        |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                         |                                                                                           |                                        |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 30 - 9                                  |                                                                                           |                                        |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 32 10                                   |                                                                                           |                                        |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 34 —                                    |                                                                                           |                                        |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                         | Groundwater Depth (m): on cor                                                             | npletion: Dry                          |                               | I         | DRAWN: D.C. LOGGED: R.R. CHECKED: C.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |

|                             | <b>FISHER</b>                                                     |                                                                               | LO(                        | g of   | В              | OR                | ehole M                                                | 10. <u>BH6</u>                | _ SHEET                              | 1 of 1                               |
|-----------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|--------|----------------|-------------------|--------------------------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|
|                             | ENGINEERING                                                       |                                                                               | PF                         | ROJECT | NO             | .: F              | E-P# 23-12806/1                                        | 2807                          |                                      |                                      |
| PROJECT                     | NAME: GEOTECHNICAL & H                                            | YDF                                                                           | ROGE                       | OLOGIC |                | LOCATION: 1144 Hu | ugel Ave, Mi                                           | dland, ON                     |                                      |                                      |
| DRILLING                    | METHOD: CME-55, Solid St                                          | em                                                                            |                            |        | DRILLING DATE: | 21 March, 2       | 2023                                                   |                               |                                      |                                      |
|                             | SOIL PROFILE                                                      |                                                                               |                            | SAM    | PLES           |                   | PENETRATION TESTING (SPT)                              | 11                            |                                      |                                      |
| (feet)<br>DEPTH<br>(meters) | DESCRIPTION                                                       | STRATA PLOT                                                                   | ELEV.<br>DEPTH<br>(m)      | LAB ID | Type NO.       | "N" VALUE         | 20 40 60 80<br>SHEAR STRENGTH (Kpa) ♣<br>40 80 120 160 | 20 40<br>MOISTURE CO<br>10 20 | 60 80<br>NTENT (%) <b>O</b><br>30 40 | - PIEZOMETER OR<br>WELL CONSTRUCTION |
| 00                          | 5" TOPSOIL: Organic material, roots,<br>clay, silt & sand, moist  | ***                                                                           | 245.96<br>0.30 /<br>245.66 |        | SS-1           | 6                 | ▲                                                      |                               |                                      |                                      |
|                             | FILL (POSSIBLE FILL):<br>Brown sand, very moist<br>SAND:          |                                                                               | 1                          |        | SS-2           | 9                 |                                                        |                               |                                      |                                      |
| 4                           | Brown, moist, loose to compact to loose<br>Slightly moist @ 1.52m |                                                                               |                            |        | 33-2           | 3                 |                                                        |                               |                                      |                                      |
| 6 <u>-</u><br>- <u>-</u> 2  | ongitty moist @ 1.02m                                             |                                                                               |                            |        | SS-3           | 11                |                                                        |                               |                                      |                                      |
| 8                           |                                                                   |                                                                               |                            |        | SS-4           | 9                 |                                                        |                               |                                      |                                      |
| 10 - 3                      | Moist @ 3.05m                                                     |                                                                               |                            |        |                | 4.0               |                                                        |                               |                                      |                                      |
|                             | End of borehole at 3.51m                                          | lan san san san san<br>San San San<br>San San San San San San San San San San | 3.51 /<br>242.45           |        | SS-5           | 10                |                                                        |                               |                                      |                                      |
| <b>1</b> 4                  |                                                                   |                                                                               |                            |        |                |                   |                                                        |                               |                                      |                                      |
|                             |                                                                   |                                                                               |                            |        |                |                   |                                                        |                               |                                      |                                      |
| 5                           |                                                                   |                                                                               |                            |        |                |                   |                                                        |                               |                                      |                                      |
|                             |                                                                   |                                                                               |                            |        |                |                   |                                                        |                               |                                      |                                      |
|                             |                                                                   |                                                                               |                            |        |                |                   |                                                        |                               |                                      |                                      |
| 227                         |                                                                   |                                                                               |                            |        |                |                   |                                                        |                               |                                      |                                      |
| 24                          |                                                                   |                                                                               |                            |        |                |                   |                                                        |                               |                                      |                                      |
| 26 - 8                      |                                                                   |                                                                               |                            |        |                |                   |                                                        |                               |                                      |                                      |
| 28 —                        |                                                                   |                                                                               |                            |        |                |                   |                                                        |                               |                                      |                                      |
| 30 - 9                      |                                                                   |                                                                               |                            |        |                |                   |                                                        |                               |                                      |                                      |
| 32 —                        |                                                                   |                                                                               |                            |        |                |                   |                                                        |                               |                                      |                                      |
| 10<br>34                    |                                                                   |                                                                               |                            |        |                |                   |                                                        |                               |                                      |                                      |
|                             | Groundwater Depth (m): on cor                                     | mole                                                                          | tion                       | Dry    |                |                   |                                                        |                               |                                      |                                      |
|                             |                                                                   | npie                                                                          | UUII.                      | י ש    |                |                   | DRAWN: D.C.                                            | LOGGED:R.F                    | R.                                   | CHECKED: C.W.                        |

|                             | <b>FISHER</b>                                                                   |             | LO                         | g of   | В        | OR        | EHOLE                     | NC           | . <u>BH7</u>          | _ SHEET             | 1 of 1                               |
|-----------------------------|---------------------------------------------------------------------------------|-------------|----------------------------|--------|----------|-----------|---------------------------|--------------|-----------------------|---------------------|--------------------------------------|
|                             | ENGINEERING                                                                     |             |                            |        |          | .: F      | E-P# 23-12                | 2806/128     | 307                   |                     |                                      |
| PROJECT                     | NAME: GEOTECHNICAL & H                                                          | IYDF        | ROGE                       | OLOGIC | CAL      |           | LOCATION: 1               | 1144 Hug     | el Ave, Mic           | lland, ON           |                                      |
| DRILLING                    | METHOD: CME-55, Solid St                                                        | em          |                            |        |          |           | DRILLING D                | ATE: 2       | 1 March, 2            | 023                 |                                      |
|                             | SOIL PROFILE                                                                    | ⊢           |                            | SAM    | IPLES    |           | PENETRATION TEST          | TING (SPT) 🔺 | VAPOUR READI<br>20 40 | NG (ppm) 🗆<br>60 80 |                                      |
| (feet)<br>DEPTH<br>(meters) | DESCRIPTION                                                                     | STRATA PLOT | ELEV.<br>DEPTH<br>(m)      | LAB ID | Type NO. | "N" VALUE | SHEAR STRENGT<br>40 80 12 | Н (Кра) 🖶    | MOISTURE CON<br>10 20 |                     | - PIEZOMETER OR<br>WELL CONSTRUCTION |
| 0 0                         | 5" TOPSOIL: Organic material, roots,<br>clay, silt & sand, moist                | ××          | 245.98<br>0.30 /<br>245.68 |        | SS-1     | 6         | <br>  <b>↑</b>            | <br>  ]      |                       |                     |                                      |
|                             | FILL (POSSIBLE FILL):<br>Brown sand, very moist<br>SAND:<br>Brown, moist, loose |             |                            |        | SS-2     | 7         |                           |              |                       |                     |                                      |
|                             |                                                                                 |             |                            |        | SS-3     | 10        |                           |              |                       |                     |                                      |
|                             | Slightly moist @ 2.29m                                                          |             |                            |        |          |           |                           |              |                       |                     |                                      |
|                             |                                                                                 |             |                            |        | SS-4     | 10        |                           |              |                       |                     |                                      |
|                             | End of borehole at 3.51m                                                        |             | 3.51 /<br>242.47           |        | SS-5     | 9         |                           |              |                       |                     |                                      |
| 14 — 4                      |                                                                                 |             |                            |        |          |           |                           |              |                       |                     |                                      |
|                             |                                                                                 |             |                            |        |          |           |                           |              |                       |                     |                                      |
|                             |                                                                                 |             |                            |        |          |           |                           |              |                       |                     |                                      |
| 20 - 6                      |                                                                                 |             |                            |        |          |           |                           |              |                       |                     |                                      |
|                             |                                                                                 |             |                            |        |          |           |                           |              |                       |                     |                                      |
| 24 — 7                      |                                                                                 |             |                            |        |          |           |                           |              |                       |                     |                                      |
|                             |                                                                                 |             |                            |        |          |           |                           |              |                       |                     |                                      |
|                             |                                                                                 |             |                            |        |          |           |                           |              |                       |                     |                                      |
| 30 — <b>9</b>               |                                                                                 |             |                            |        |          |           |                           |              |                       |                     |                                      |
|                             |                                                                                 |             |                            |        |          |           |                           |              |                       |                     |                                      |
| 10<br>34                    |                                                                                 |             |                            |        |          |           |                           |              |                       |                     |                                      |
|                             | Groundwater Depth (m): on cor                                                   | <br>nple    | tion:                      | Dry    |          |           |                           |              |                       |                     |                                      |
|                             |                                                                                 |             |                            |        |          |           | DRAWN: D.C.               |              | LOGGED: R.R           |                     | CHECKED: C.W.                        |

#### **APPENDIX C – LABORATORY TEST RESULTS**



Project No. FG 23-12807 April 20, 2023





Project Name:Geotechnical InvestigationClient:United Hotels Inc.Project ID:23-12807Location:1141 Hugel Avenue,<br/>Midland, Ontario

| F.E. Lab #:    | 23-220      |
|----------------|-------------|
| Date Sampled:  | 21-Mar-2023 |
| Date Received: | 23-Mar-2023 |
| Date Reported: | 6-Apr-2023  |

## **Certificate of Analysis**

| Analyses                       | Matrix | Quantity | Testing Date | Method Reference |
|--------------------------------|--------|----------|--------------|------------------|
| Moisture Content               | Soil   | 14       | 23-Mar-23    | ASTM D2216       |
| Grain Size (Sieve<br>Analysis) | Soil   | 6        | 24-Mar-23    | LS-602           |
| Grain Size<br>(Hydrometer)     | Soil   | 2        | 03-Apr-23    | LS-702           |
| Atterberg test                 | Soil   | 0        | N.A.         | LS-703/704       |

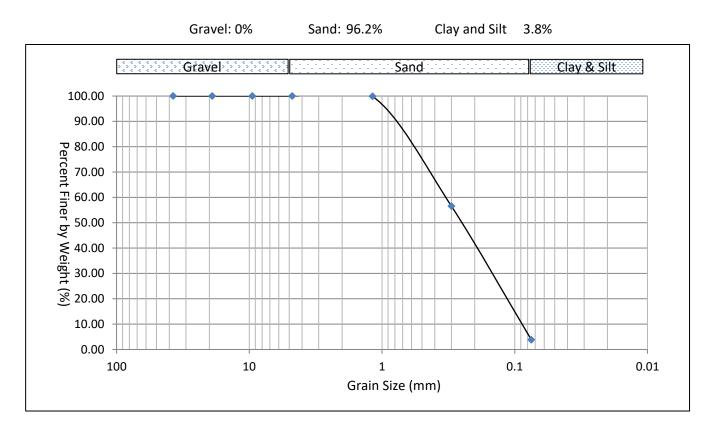
Authorized by:

Behnam Sayad-Pour

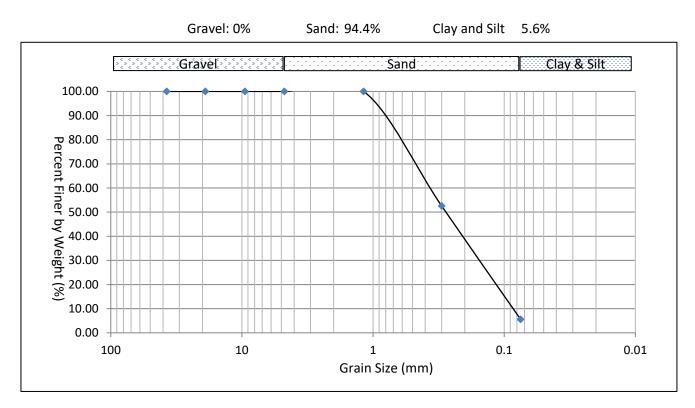
Behnam Sayad Pour Zanjani Geo-Lab Supervisor

400 Esna Park Drive, Unit 15, Markham, ON L3R 3K2 Tel:(905) 475-7755 www.fishereng.com

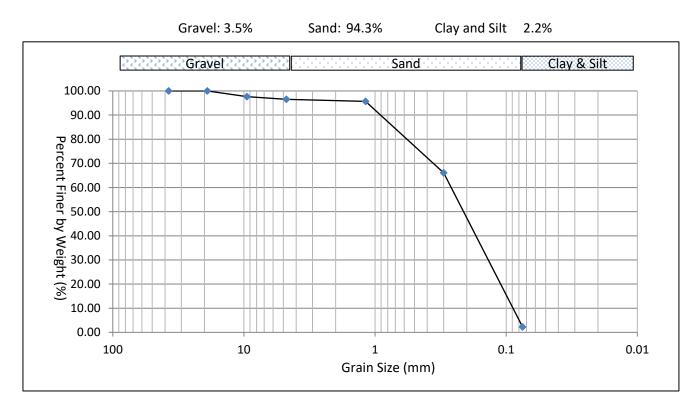
#### **F.E. Lab #:** 23-220


| Analysis Requested: Moisture Content Sample Description: 14 Soil Sample(s) |           |                  |           |                                       |           |           |  |  |
|----------------------------------------------------------------------------|-----------|------------------|-----------|---------------------------------------|-----------|-----------|--|--|
| Analysis Requested:                                                        | Samp      | ole Description: | 14        | Soil Sample(s)                        |           |           |  |  |
|                                                                            |           |                  |           |                                       |           |           |  |  |
| Sample Info                                                                | BH1 SS2   | BH1 SS3          | BH1 SS4   | BH1 SS5                               | BH3 SS2   | BH3 SS3   |  |  |
| Sample Depth (m)                                                           | 0.76-1.22 | 1.53-1.98        | 2.29-2.75 | 3.05-3.51                             | 0.76-1.22 | 1.53-1.98 |  |  |
| Moisture Content (%)                                                       | 4.9       | 3.8              | 4.2       | 4.6                                   | 4.9       | 4.4       |  |  |
|                                                                            |           |                  |           |                                       |           |           |  |  |
| Sample Info                                                                | BH3 SS4   | BH3 SS5          | BH5 SS2   | BH5 SS3                               | BH5 SS4   | BH5 SS5   |  |  |
| Sample Depth (m)                                                           | 2.29-2.75 | 3.05-3.51        | 0.76-1.22 | 1.53-1.98                             | 2.29-2.75 | 3.05-3.51 |  |  |
| Moisture Content (%)                                                       | 4.4       | 4.9              | 5.3       | 4.5                                   | 3.8       | 4.8       |  |  |
|                                                                            |           |                  |           | · · · · · · · · · · · · · · · · · · · |           | 1         |  |  |
| Sample Info                                                                | TH1       | TH2              |           |                                       |           |           |  |  |
| Sample Depth (m)                                                           | 1.53-1.98 | 1.53-1.98        |           |                                       |           |           |  |  |
| Moisture Content (%)                                                       | 19.3      | 23.4             |           |                                       |           |           |  |  |

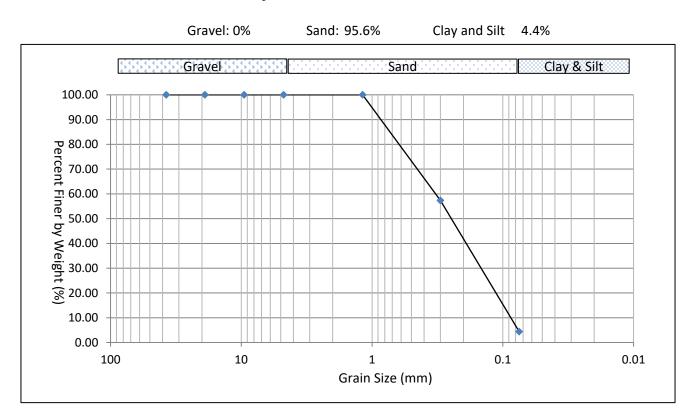
# **Certificate of Analysis**


| Analysis Requested: | ve Analysis) | e Analysis) Sample Quantity: |           |           | 6 Soil Sample(s) |           |  |  |
|---------------------|--------------|------------------------------|-----------|-----------|------------------|-----------|--|--|
|                     |              |                              |           |           |                  |           |  |  |
| Sample Info         | 23-221       | 23-222                       | 23-223    | 23-224    | 23-225           | 23-226    |  |  |
| Sample Info         | BH1 SS2      | BH1 SS3                      | BH3 SS2   | BH3 SS3   | BH5 SS2          | BH5 SS3   |  |  |
| Sample Depth (m)    | 0.76-1.22    | 1.53-1.98                    | 0.76-1.22 | 1.53-1.98 | 0.76-1.22        | 1.53-1.98 |  |  |
| Grain Size (%)      |              |                              |           |           |                  |           |  |  |
| >19mm               | 0.0          | 0.0                          | 0.0       | 0.0       | 0.0              | 0.0       |  |  |
| 9.5mm-19mm          | 0.0          | 0.0                          | 2.4       | 0.0       | 0.0              | 0.0       |  |  |
| 4.75mm-9.5mm        | 0.0          | 0.0                          | 1.1       | 0.0       | 0.0              | 0.0       |  |  |
| 1.18mm-4.75mm       | 0.1          | 0.0                          | 0.8       | 0.0       | 0.3              | 0.0       |  |  |
| 300um-1.18mm        | 43.3         | 47.4                         | 29.6      | 42.6      | 19.5             | 30.3      |  |  |
| 75um-300um          | 52.7         | 47.0                         | 63.8      | 53.0      | 74.6             | 65.0      |  |  |
| <75um               | 3.8          | 5.6                          | 2.2       | 4.4       | 5.6              | 4.7       |  |  |
| Clay and Silt       | 3.8          | 5.6                          | 2.2       | 4.4       | 5.6              | 4.7       |  |  |
| Sand                | 96.2         | 94.4                         | 94.3      | 95.6      | 94.4             | 95.3      |  |  |
| Gravel              | 0.0          | 0.0                          | 3.5       | 0.0       | 0.0              | 0.0       |  |  |

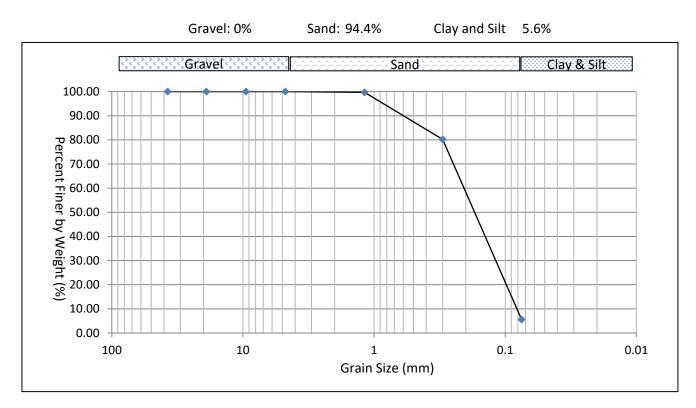
# Certificate of Analysis


Sample ID: 23-221 BH1 SS2 0.76-1.22m

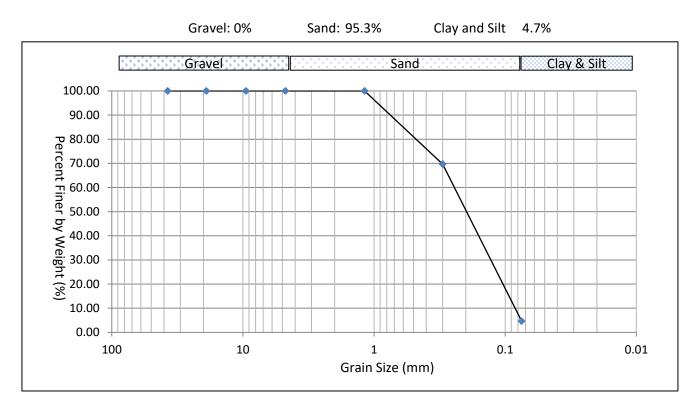



Sample ID: 23-222 BH1 SS3 1.53-1.98m




Sample ID: 23-223 BH3 SS2 0.76-1.22m




Sample ID: 23-224 BH3 SS3 1.53-1.98m

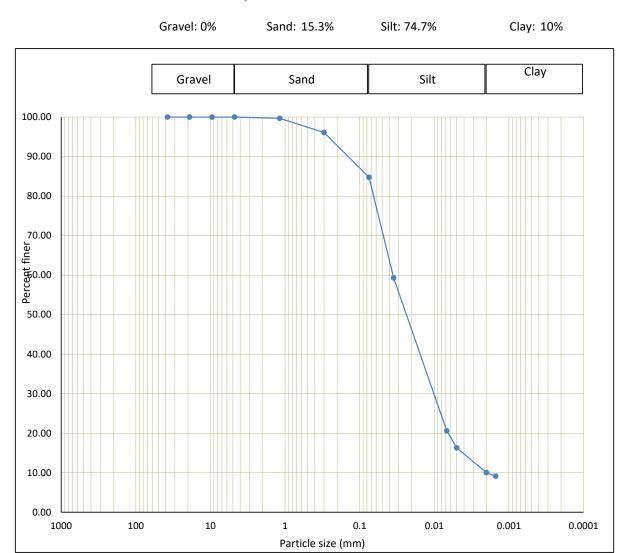


Sample ID: 23-225 BH5 SS2 0.76-1.22m



Sample ID: 23-226 BH5 SS3 1.53-1.98m



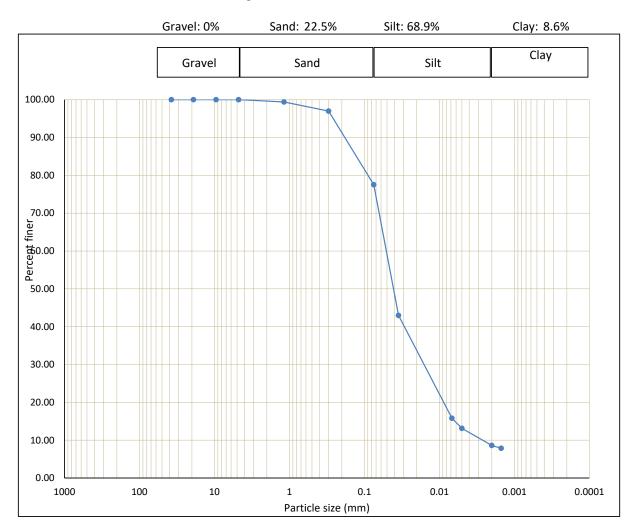

## Certificate of Analysis

| Analysis Requested: | Grain Size (Hydrometer) |
|---------------------|-------------------------|
| Sample Description: | 2 Soil Sample(s)        |
|                     |                         |

| Sample Info      | 23-228<br>TH1 | 23-229<br>TH2 |  |  |
|------------------|---------------|---------------|--|--|
| Sample Depth (m) | 1.53-1.98     | 1.53-1.98     |  |  |
| Grain Size (%)   |               |               |  |  |
| >19mm            | 0.0           | 0.0           |  |  |
| 9.5mm-19mm       | 0.0           | 0.0           |  |  |
| 4.75mm-9.5mm     | 0.0           | 0.0           |  |  |
| 1.18mm-4.75mm    | 0.3           | 0.6           |  |  |
| 300um-1.18mm     | 3.6           | 2.4           |  |  |
| 75um-300um       | 11.4          | 19.4          |  |  |
| 5um-75um         | 68.5          | 64.4          |  |  |
| 2um-5um          | 6.3           | 4.5           |  |  |
| <2um             | 10.0          | 8.6           |  |  |
| Clay             | 10.0          | 8.6           |  |  |
| Silt             | 74.7          | 68.9          |  |  |
| Sand             | 15.3          | 22.5          |  |  |
| Gravel           | 0.0           | 0.0           |  |  |

*F.E. Job #*: 23-220

### Grain Size Distribution




Sample ID: 23-228 TH1 1.53-1.98m

| Sample ID: 23-228 TH1 1.53-1.98m |            |             |  |  |  |  |  |
|----------------------------------|------------|-------------|--|--|--|--|--|
| Diameter                         | Weight (%) | Grain Size  |  |  |  |  |  |
| >4.75mm                          | 0.0        | Gravel      |  |  |  |  |  |
| 1.18mm-4.75mm                    | 0.3        | Coarse Sand |  |  |  |  |  |
| 300um-1.18mm                     | 3.6        | Medium Sand |  |  |  |  |  |
| 75um-300um                       | 11.4       | Fine Sand   |  |  |  |  |  |
| 5um-75um                         | 68.5       | Silt        |  |  |  |  |  |
| 2um-5um                          | 6.3        | Siit        |  |  |  |  |  |
| <2um                             | 10.0       | Clay        |  |  |  |  |  |

*F.E. Job #*: 23-220

### Grain Size Distribution



Sample ID: 23-229 TH2 1.53-1.98m

| Sample ID: 23-229 TH2 1.53-1.98m |            |             |  |  |  |  |
|----------------------------------|------------|-------------|--|--|--|--|
| Diameter                         | Weight (%) | Grain Size  |  |  |  |  |
| >4.75mm                          | 0.0        | Gravel      |  |  |  |  |
| 1.18mm-4.75mm                    | 0.6        | Coarse Sand |  |  |  |  |
| 300um-1.18mm                     | 2.4        | Medium Sand |  |  |  |  |
| 75um-300um                       | 19.4       | Fine Sand   |  |  |  |  |
| 5um-75um                         | 64.4       | Silt        |  |  |  |  |
| 2um-5um                          | 4.5        | Siit        |  |  |  |  |
| <2um                             | 8.6        | Clay        |  |  |  |  |

FISHER ENVIRONMENTAL LABORATORIES FULL RANGE ANALYTICALSERVICES • SOIL/WATER/AIR TESTING • ENVIRONMENTAL COMPLIANCE PACKAGES • 24 HOUR EMERGENCY RESPONSE • CALA ACCREDITED 400 ESNA PARK DRIVE #15 MARKHAM, ONT. L3R 3K2 TEL: 905 475-7755 FAX: 905 475-7718 www.fisherenvironmental.com

| Client:  | United Hotel Inc. F.E. Job #: | 23-9971           |
|----------|-------------------------------|-------------------|
| Address: | Project Name:                 | Geotechnical      |
|          | Project ID:                   | FG-P 23-12807     |
|          | Date Sampled:                 | 21-Mar-2023       |
| Tel.:    | Date Received:                | 23-Mar-2023       |
| Email:   | Date Reported:                | 30-Mar-2023       |
| Attn.:   | Location:                     | 1144 Hugel Avenue |
|          |                               |                   |

## **Certificate of Analysis**

| Analyses | Matrix | Quantity | Date<br>Extracted | Date Analyzed | Lab SOP        | Method<br>Reference     |
|----------|--------|----------|-------------------|---------------|----------------|-------------------------|
| рН       | Soil   | 4        | 27-Mar-23         | 27-Mar-23     | pH-EC-SAR F-16 | SW-846, 9045D           |
| Chloride | Soil   | 4        | N/A               | 28-Mar-23     | Chloride F-20  | SM 4500-Cl-E            |
| Sulphate | Soil   | 4        | 27-Mar-23         | 28-Mar-23     | Sulphate F-21  | SM 4500-SO <sub>4</sub> |

Fisher Environmental Laboratories is accredited by CALA (the Canadian Association for Laboratory Accreditation Inc.) for specific parameters as required by Ontario Regulation 153/04. All analytical testing has been performed in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act published by Ontario Ministry of the Environment.

EMICAL CHARTERED ATION OF Ronggen (Roger) Lin Authorized by:\_ CHEMIS 430SS Roger Lin, Ph. D., C. Chem. Laboratory Manager

| Analysis Requested: | pH, Sulphate, | pH, Sulphate, Chloride |            |            |  |                       |  |
|---------------------|---------------|------------------------|------------|------------|--|-----------------------|--|
| Sample Description: | 4 Soil Sample | 4 Soil Sample(s)       |            |            |  |                       |  |
|                     |               |                        |            |            |  |                       |  |
|                     | 23-9971-1     | 23-9971-2              | 23-9971-3  | 23-9971-4  |  |                       |  |
| Parameter           | BH1 SS2       | BH1 SS3                | BH3 SS2    | BH3 SS3    |  | Soil Standards $^{*}$ |  |
|                     | 0.76-1.22m    | 1.52-1.98m             | 0.76-1.22m | 1.52-1.98m |  |                       |  |
| <b>pH</b> (pH unit) | 7.72          | 7.30                   | 7.64       | 7.57       |  | (5-11) 5-9            |  |

## **Certificate of Analysis**

 $\ast$  Surface soil pH value from 5 - 9, Sub-surface soil pH value from 5-11.

# **QA/QC Report**

| Parameter           | LCS  | AR        | Duplicate | AR |  |
|---------------------|------|-----------|-----------|----|--|
|                     |      | Absolu    |           |    |  |
| <b>pH</b> (pH unit) | 7.12 | 6.90-7.20 |           |    |  |

#### LEGEND:

LCS - Laboratory Control Sample

AR - Acceptable Range

## **Certificate of Analysis**

| Analysis Requested: | pH, Sulphate, Chloride    |            |            |            |  |  |  |  |
|---------------------|---------------------------|------------|------------|------------|--|--|--|--|
| Sample Description: | 4 Soil Sample(s)          |            |            |            |  |  |  |  |
|                     |                           |            |            |            |  |  |  |  |
| Parameter           | 23-9971-1                 | 23-9971-2  | 23-9971-3  | 23-9971-4  |  |  |  |  |
|                     | BH1 SS2                   | BH1 SS3    | BH3 SS2    | BH3 SS3    |  |  |  |  |
|                     | 0.76-1.22m                | 1.52-1.98m | 0.76-1.22m | 1.52-1.98m |  |  |  |  |
|                     | $Concentration (\mu g/g)$ |            |            |            |  |  |  |  |
| Chloride in Soil    | 18                        | 15         | 11         | 13         |  |  |  |  |

< result obtained was below RL (Reporting Limit).

## **QA/QC Report**

| Parameter        | Blank  | RL | LCS          | AR     | MS           | AR     |
|------------------|--------|----|--------------|--------|--------------|--------|
|                  | (μg/g) |    | Recovery (%) |        | Recovery (%) |        |
| Chloride in Soil | <10    | 10 | 103          | 70-130 | 117          | 70-130 |

| Parameter        | Duplicate | AR   |  |  |
|------------------|-----------|------|--|--|
|                  | RPD (%)   |      |  |  |
| Chloride in Soil | 3.4       | 0-20 |  |  |

#### LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

MS - Matrix Spike

AR - Acceptable Range

RPD - Relative Percent Difference

| Analysis Requested: | pH, Sulphate, Chloride |            |            |            |  |  |  |
|---------------------|------------------------|------------|------------|------------|--|--|--|
| Sample Description: | 4 Soil Sample(s)       |            |            |            |  |  |  |
|                     |                        |            |            |            |  |  |  |
|                     | 23-9971-1              | 23-9971-2  | 23-9971-3  | 23-9971-4  |  |  |  |
| Parameter           | BH1 SS2                | BH1 SS3    | BH3 SS2    | BH3 SS3    |  |  |  |
|                     | 0.76-1.22m             | 1.52-1.98m | 0.76-1.22m | 1.52-1.98m |  |  |  |
| Sulphate (mg/kg)    | 3                      | <1         | 7          | <1         |  |  |  |

## **Certificate of Analysis**

# **QA/QC Report**

| Parameter | Blank   | RL | LCS/Spike    | AR     | Duplicate | AR   |
|-----------|---------|----|--------------|--------|-----------|------|
|           | (mg/kg) |    | Recovery (%) |        | RPD (%)   |      |
| Sulphate  | <1      | 1  | 101          | 70-130 | 5         | 0-30 |

LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

AR - Acceptable Range

RPD - Relative Percent Difference